Detection and Avoidance Scheme for DS-UWB System: A Step Towards Cognitive Radio
نویسندگان
چکیده
Cognitive radio (CR) improves spectrum efficiency to satisfy increasing demands on wireless transmission by dynamic spectrum access without interfering with legacy networks. In 2004, IEEE 802.22 Working Group was formed to develop a standard for wireless regional area networks (WRANs) based on CR technology (Hu et al et al., 2007). It is expected to obtain a broadband access to data networks on the vacant TV channels while avoiding harmful interference to licensed TV broadcasting in rural areas within a typical radius of 17km to 30km (Stevenson et al., 2006). Ultra wideband radio (UWB), a promising technology, has found a myriad of exciting applications as well as generating a great deal of controversy, for its extremely broad bandwidth transmission as well as its revolutionary way of overlaying coexistent RF systems could cause interference on them (Lansford, 2004; Parr et al., 2003). Over the years, the co-existence problem of UWB has been all along a hot topic in the academy, industry, and regulatory bodies. After years of public debates, arguments, and comments, two important solutions to the co-existence problem are made—the policy-based power emission mask (FCC, 2002) and the device-centric cognitive radio (Lansford, 2004; Walko, 2005; Haykin, 2005). So far, several cognitive UWB schemes have been proposed, among which are soft-spectrum (Zhang & Kohno, 2003) scheme and detection-and-avoidance (DAA) scheme (Kohno & Takizawa, 2006). Reliably detecting of weak primary signals is an essential functionality for a DAA UWB system as soon as a primary user (PU) comes back into operation on the operating channels. Two types of primary users are defined in a WRAN which are TV services and wireless microphones (WMs). Compared with TV services, it is tougher to detect WM signals for the following two reasons. Firstly, wireless microphones are low power devices and occupy a narrow bandwidth. The transmission power of a WM is as low as 50mW in a 200kHz bandwidth. When the sensor is several hundred meters away from this WM signal, the received signal-to-noise ratio (SNR) may be below -20dB (Zeng & Liang, 2007). Another, they utilize arbitrary unused TV bands and are deployed for a short time such that it is difficult for CR users to obtain much information on WM signals (De & Liang, 2007; Dhillon & Brown, 2008). This chapter will concern two questions. Firstly, how to detect the weak primary signals. Secondly, how to avoid such interference from the primary user and how to coexist with it.
منابع مشابه
Cognitive Radio Combined with Ultra Wideband Technology for Spectrum-Agile Wireless Communications
The emerging cognitive radio system can sense and adapt to the wireless environment in which it operates. Cognitive radio with intelligent capabilities of both radio link and network layers is capable of transmitting in an optimized way across the available signal dimensions allowing a potential huge increase in the prospects for spectrum efficiency, co-existence, compatibility and interoperabi...
متن کاملA Spectrum Sensing Framework for UWB-Cognitive Network
Due to that the Ultra Wide Band (UWB) technology has some attractive features like robustness to multipath fading, high data rate, low cost and low power consumption, it is widely use to implement cognitive radio network. Intuitively, one of the most important tasks required for cognitive network is the spectrum sensing. A framework for implementing spectrum sensing for UWB-Cognitive Network wi...
متن کاملDetect and Avoid: An Ultra-Wideband/WiMax Coexistence Mechanism
Cognitive radios have been advanced as a technology for the opportunistic use of under-utilized spectrum wherein secondary devices sense the presence of the primary user and use the spectrum only if it is deemed empty. Spectral cognition of this form can also be used by regulators to facilitate the dynamic coexistence of different service types. An example of this is the operation of ultra-wide...
متن کاملThe Optimal MMSE Transceiver Design for IoT-oriented Cognitive Radio Systems
This paper studies interference alignment scheme and minimum mean square error (MMSE) improvement in Internet of Things (IoT)-oriented cognitive systems, where IoT devices share the licensed spectrum by cognitive radio in spectrum underlay. Target to manage the inter-tier interference caused by cognitive spectrum sharing as well as ensure an MMSE at receivers, the interference alignment algorit...
متن کاملAvoiding WIMAX Interference on Ultra Wide Band MB-OFDM System by Cognitive Radio
This paper considers the ECMA-368 standard based on Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) as an Ultra Wideband (UWB) system in the presence of interference from an IEEE 802. 16 WiMAX systems operating at 3. 5 GHz. Simulations are conducted following the standards and adopting the IEEE 802. 15. 3a channel model CM1. This paper shows that the system fails because of the W...
متن کامل